PHYSICAL REVIEW E

VOLUME 47, NUMBER 5

RAPID COMMUNICATIONS

MAY 1993

Limited stochastic electron acceleration induced by an intense cyclotron wave in a plasma

Daniela Farina
Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, via Bassini 15, I-20133 Milano, Italy

Roberto Pozzoli and Massimiliano Romé
Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano, Italy
(Received 22 December 1992)

An investigation of the stochastic electron acceleration in a magnetized plasma due to an intense elec-
tron cyclotron wave is performed for the case of a stochastic regime where only a few resonances overlap
and the stochastic region in phase space is bounded. The electron dynamics is described by a Hamiltoni-
an function H(6,1,t), and the stochastic properties of the system are investigated by means of the
Poincaré-section method and the analytical estimates of the phase-correlation function. The behavior of
the system is then analyzed through the Fokker-Planck-Kolmogorov (FPK) diffusion equation in action
space. The theoretical FPK predictions are compared with the results of a numerical simulation of the
particle motion. It is found that the system satisfies the diffusion equation at times that are short com-
pared to the saturation time of the quasilinear diffusion. Appreciable deviations from the diffusive re-
sults are found at longer times, since the particle motion is influenced by the region of local stochasticity

in phase space.

PACS number(s): 52.50.Gj, 52.35.Mw, 02.50.—r, 05.45.+b

The problem of the nonlinear interaction of a magnet-
ized plasma with an intense beam of electromagnetic (em)
waves has recently received increased interest, due to the
development of powerful radio-frequency sources, such as
gyrotrons and free-electron lasers, for plasma heating in
controlled thermonuclear fusion devices [1]. The investi-
gation of the nonlinearities induced in the particle dy-
namics by the em field is also of interest for the study of
astrophysical plasmas and wave propagation in the iono-
sphere [2,3].

We are interested here in the stochastic particle motion
and refer, for definiteness, to an electron cyclotron wave,
with frequency o, propagating in a plasma perpendicular-
ly to a static magnetic field B,=B,e,. The perturbation
parameter relevant to the problem is e=eE/mco<]1,
with E the electric-field amplitude of the wave. For van-
ishingly small € the wave interacts resonantly with the
electrons, whose energy mc?y satisfies the condition
o=nfl/y, where Q=eB,/mc is the nonrelativistic elec-
tron gyrofrequency and n is a positive integer. If € is
sufficiently high a stochastic regime can set in, because of
the resonance overlapping, which is driven by the strong
em perturbation. In the following, we consider explicitly
the case of the extraordinary mode at the second cyclo-
tron harmonic, since the conditions for stochasticity are
less severe in comparison with the case of the ordinary
mode [1,4].

The analysis of this dynamical system in the globally
stochastic regime, where a large number of resonances
overlap, has been made in detail in Ref. [4], where it has
been shown that the energy variation process is diffusive,
and the theoretical predictions, obtained on the basis of a
Fokker-Planck-Kolmogorov (FPK) equation with a local
quasilinear diffusion coefficient, are in good agreement
with the results from direct numerical integration of the
equations of motion for a set of particles.

Here we consider a different physical situation, not yet
investigated in the literature, where only a few resonances
overlap and at high energy a transition to regular motion
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occurs. For the mode under consideration at a given €
this regime is found when the plasma density is increased,
due to the corresponding modification of the wave polar-
ization. The aim of the present paper is to investigate the
electron-energy-gain process in this case, and in particu-
lar the validity of a FPK approach. The method fol-
lowed is quite general, and the main results found here
can be applied to other cases where the region of stochas-
tic motion in phase space is bounded.

In the system under consideration, the electron motion
is described by means of a relativistic Hamiltonian
H(I,6,t) where 6,1 are angle-action variables. To first
order in € it reads [4]

H=y=HyI)+H6,1,1), (1)
where

H,=T=(1+2I+P})'"?,

H,=—€XH,,(I,P,)cos(n0—vt) ,

where v=0/Q, H,,=06,(P,,I)/T', and the momentum
P, conjugate to z is a constant of motion. The polariza-
tion term reads ©,=V2I[n_J,_(b)+n,J, (b)]
+P,n,J,(b), where _, 1, and 7,, are the right, left,
and parallel components of the polarization vector, J, is
the Bessel function of order » and argument b =vN V2I,
and N =kc/w is the refractive index. For the unper-
turbed system, 6 represents the phase of the electron
gyromotion, and I =p? /2. Dimensionless quantities are
used: time, length, momentum, energy, and vector poten-
tial are normalized over Q7! ¢Q~!, mc, mc?, and
mc?/e, respectively.

A globally stochastic regime takes place in the plasma
for sufficiently large € values: € >€,, €. being the (action
dependent) critical value for the transition to stochastic
motion, which can be estimated on the basis of the Chiri-
kov criterion of overlapping resonances [5]. For our sys-
tem €, ~[16v?0,(T,)]"}, where I,=1/2(n?/v*—1—P?)
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is the resonant action value [4]. In the limit of negligible
density €. is proportional to I ~!/%. At finite density, €,
exhibits a minimum as a function of I. The action value
corresponding to it decreases as the plasma density in-
creases. Then, for a given €, the condition €.(I)=e¢
defines an action value I,,, which gives an estimate of the
upper action boundary in phase space.

A qualitative description of the behavior of the system
can be given by means of the well-known Poincaré sur-
face of section method, which in our case is obtained
plotting the values of 6,1 at the times ¢, =2k /v, with
k=0,1,..., i.e., at times that are multiples of the wave
period. A typical plot is shown in Fig. 1 that is relevant
to a large-density case. We note that the Poincaré section
of the system under consideration cannot be obtained by
a simple mapping, due to a nontrivial dependence of the
Hamiltonian H; on the action. The surface of section
can be roughly divided into three distinct zones: at low
action values, a region of globally stochastic dynamics is
found, followed by a region of local stochasticity, where
the coexistence of regular structures and chaotic orbits is
apparent, and finally by a region of regular (nonstochas-
tic) dynamics. On the long time scale, the behavior of the
system is expected to be strongly affected by the existence
of the intermediate region of vanishing diffusion and lo-
cally stochastic dynamics. Particles are partly
‘“reflected,” and partly suffer a slow diffusion through this
transition region. Moreover, the presence of the upper
region of regular dynamics gives a limit in the energy the
electron population can gain. The boundary between the
region of regular motion and the region of local stochasti-
city is characterized by the presence of invariant curves,
which exhibit large oscillations in action. The structure
of these curves can be easily explained as an interference
process between two adjacent resonances of high order.
It is found that the upper limit I,, given by the Chirikov
criterion is in qualitative agreement with the results of
the Poincaré plot.

For the system described by the Hamiltonian (1), a
diffusion equation for the distribution function averaged
over the phases f(I,t) can be written, following the FPK
approach [6]
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FIG. 1. Poincaré plot for the dynamical system described by
the Hamiltonian (1). The chosen values of the parameters are
v=0/Q1=1.8, v, /©=0.6, and €=0.4. Six initial conditions at
1,=10, P,=0, and uniform phase 6, have been considered.
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To lowest order in €, this equation describes a diffusion
process in the variable p? /2, at constant P,.

Taking explicitly into account the effects of the phase
correlations, D can be written as

D(I)=me*¥ n’H},A,(a,), (3)

where
a,=n/T'—wv,
A,,=(l/'rr)Redeexp(ia,,T)R,,(T) )

R, (7)=exp(—inT/T) foh %—?}exp{in[@(‘r)—()o]} 4)
is the phase correlator, and the average in Eq. (4) is per-
formed over the initial phases 6.

The correlation function R,, has been estimated analyt-
ically, linearizing the equation of motion around a given
initial condition 6,1,:

R,= II Jolen(4;+B;)'""*1, (5)
m (#0)

where
A, =(a,, /a, ) H,,t

-, /0, ) H 1, —H Y, Isin(a,,t)/a

(6)
B, :(a;n /) H _Hllm ][l—cos(amt)]/am ’

and the prime denotes the derivative with respect to the
action. The expression (6) differs from that given in Ref.
[4] since now the explicit dependence of H;, on the ac-
tion has been taken into account. The behavior of R, (2),
as obtained by direct numerical integration of the equa-
tions of motion and by Eq. (5), is shown in Fig. 2 for two
different values of the initial action. The agreement be-
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FIG. 2. Behavior of the modulus squared of the correlation
function |R, |? vs time. The dotted curve represents the analyti-
cal expression derived from Eq. (5). The solid curve is obtained
from the numerical solution of the equations of motion for a set
of particles. The number of particles is N, =500, and a uniform
random phase distribution has been chosen. The values of the
parameters are the same as in Fig. 1. Curves ¢ and b corre-
spond to an initial action value I, =5 and 10, respectively.
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tween the numerical and the analytical results is fairly
good at short times (up to approximately the first zero),
while at longer times the analytical expression slightly
differs from the numerical curve, since the linearization
procedure is not valid. The characteristic correlation
time 7, can be estimated as the first root of the function
R, (). It is found [4] that it scales approximately as
t.~8y(e,/€)'’2. When the effect of a finite correlation
time is taken into account, the diffusion coefficient can be
explicitly computed by inserting Eq. (5) in Eq. (3).

For large correlation times A, —68(a,) and Eq. (3)
reduces to

n
- Vv

r ) (7

D(I)=me*3 n*H?,8

which represents the well-known quasilinear result. An
effective diffusion coefficient, which is valid around each
resonant value of the action I, can be found by averag-
ing D (I), as given by Eq. (7), over the region between two
adjacent resonances, thus obtaining [4]

D,=(D(I,))=neXn*/vH%,I,) . (8)

The smoothing of this function defines a local quasilinear
diffusion coefficient D g ().

In Fig. 3, the expression (3) for the diffusion coefficient
is shown as a function of the action, together with D¢, .
Since the correlation time is quite large, D (I) shows
strong oscillations peaked around each harmonic, with an
average value given approximately by D . The local
quasilinear diffusion coefficient Dy has a single max-
imum and then decreases up to the action value I,,.
Beyond this value, it is assumed to be zero, since the
dynamical system is no longer governed by global sto-
chasticity and exhibits the characteristic behavior of the
transition to chaos.

In order to test the predictions of the theoretical mod-
el, numerical simulations of the motion have been per-
formed for a set of Np=1500 particles with uniformly
distributed initial phases. The chosen parameters are
v=w/Q=1.8, o, /®©=0.6, P,=0, and I,=1. The evolu-
tion of the system has been followed for a very long time
(up to t =4000) compared to the correlation time. The
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FIG. 3. Behavior of the diffusion coefficient D as a function
of the action I. The solid curve represents D (I) given by Eq.
(3), the dotted curve represents Dq , and the squares represent
the values D,. The same parameters as in Fig. 1 are considered.
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FIG. 4. Average action deviations (AI) and ((AI)?) vs
time. The solid line is the result of the numerical simulation;
the thin solid line and the dotted line are obtained solving the
FPK equation with the coefficient given by Eq. (3) and with
D, respectively. The initial condition I,=1 and a uniform
random phase distribution have been chosen. The upper action
boundary I), =13 has been chosen. The number of electrons is
Np=1500. The other parameters are the same as in Fig. 1.

numerical energy distribution function is obtained by
building the histogram with energy step Ay =1/v, which
corresponds to the energy interval between two adjacent
resonances. The average variations of the action are
computed as (AIY=31,[I,(t)~I,(0)]/N, and
((AD*)=SM?.[1.(t)—1,(0)*/Np. The results of the
numerical simulations are compared with those obtained
by the solution of the diffusion equation (2), both with the
local quasilinear diffusion coefficient and the theoretical
estimate (3). Equation (2) has been solved with the condi-
tions of zero flux DJf /3l at the boundaries 7 =0 and
I=1I,,. The average action deviations versus time and
the energy distribution function at four different times
are plotted in Figs. 4 and 5, respectively.

0.4, 0.4
A (a) b
f N Yot (k)
0.2 0.2
o.c1 3 \5' 5 0.0
Y
0.4 0.4
: = (0 :
0.2] 0.2{
0.0 0.0 I
1 3 5 7 1 3 5 7
7 e

FIG. 5. Distribution function f as a function of the energy 7,
for four different values of the time. The histogram represents
the distribution function obtained by the simulation of the
motion. The solid curve and the dotted curve are the solution
of the FPK equation with coefficient given by Eq. (3) and with
D, , respectively. The parameters are the same as in Fig. 4.
Cases (a), (b), (c), and (d) refer to t =250, 1000, 2000, and 4000,
respectively.
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A very good agreement is found between the results of
the numerical simulation of motion and the FPK results
at relatively short times (for the chosen parameters up to
t =500) but still much longer than the phase correlation
times. The distribution function obtained by the numeri-
cal simulation shows a spread in energy that is in agree-
ment with a diffusive behavior (recall that the initial con-
dition is peaked at ¥ ~1.8). At longer times the behavior
of the system is no longer diffusive in the whole phase
space, since the particle motion is influenced by the re-
gion of local stochasticity, which is found at large action
value (see Fig. 1). Therefore, the average action devia-
tions are lower than the predicted FPK values. At even
longer times (7" R 2500) the FPK approach foresees a sat-
uration of the average values of the action and of the dis-
tribution function, which are independent of the specific
value and shape of the diffusion coefficient. The satura-
tion process is due to the presence of the upper boundary
I,s: f(I) approaches the constant value I,;! [f(y) scales
as y]. On the contrary, no saturation of f on the whole
stochastic region is observed up to the very long time
scale of the simulation. The actual process turns out to
be only partially diffusive. Moreover, a particle leakage
is observed through the boundary I =1I,, determined by
the Chirikov criterion.
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Comparing the results obtained solving the diffusion
equation (2) with the local quasilinear diffusion coefficient
D, and with the coefficient (3), which takes into account
the correlation effects, negligible differences are found in
the average action deviations. The distribution function
computed with the diffusion coefficient (3) exhibits small
oscillations around the quasilinear function, which are
more pronounced at large y, where ¢, is longer, and at
short times, i.e., before the occurrence of the saturation.

In conclusion, we have analyzed the electron accelera-
tion by an electromagnetic wave in a case where the sto-
chastic region in phase space is bounded. We have
identified two well-defined phases of the process: a
diffusive phase, characterized by a globally stochastic dy-
namics in phase space and well described by a quasilinear
diffusion coefficient with an upper limit determined by
the Chirikov criterion; a subsequent phase, where a local
regular motion manifests itself through longer correlation
times and through the presence of islands and boundaries
in phase space, so that the diffusive character of the pro-
cess is lost.
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